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Abstract. How to measure static properties in dynamic models? We propose a basic 
approach that should help keep the statics and the dynamics of growth models clearly 
separated. Our formalism is used to elaborate a large cell renormalisation group scheme 
which gives very good results for the determination of the fractal dimension of Eden and 
DLA models. We also propose a dynamic scaling theory for growth models which we verify 
for both Eden and DLA models. 

Models for growth phenomena have received an enormous amount of attention in 
recent years owing to their relevance to a variety of physical and biological phenomena 
and to their intrinsic theoretical interest (for a review see [l]). 

The most interesting characteristic for these models is the dependence of the 
root-mean-square radius of gyration 6 = (R%)1’2 on the size N of the aggregate. For 
structures with scale invariance 6 grows as 6 - where df is the fractal dimension 
of the aggregate [2]. Attempts to calculate the fractal dimension via a renormalisation 
group scheme have given poor results [3-51. For the diff usion-limited aggregation 
(DLA) model [6] and the Eden model [7] the renormalisation procedure is based on 
a cell-to-site mapping of spanning configurations, limiting the growth inside the cell. 
For small cells the method gives reasonable results, but for large cells the agreement 
with the accepted value for df becomes worse, resulting in a very slow convergence 
even for the simple case of the Eden model [5]. This is in contrast to static problems 
such as percolation or lattice animals where the convergence is very good. Other 
variations of this method also produced unsatisfactory results [ 81. 

We believe that a proper way to treat the problem is to take into account the 
intrinsically dynamic nature of the growth process. In the DLA model the internal core 
of the aggregate in the long-time regime is stationary, while the outer part, where the 
growth process mostly occurs, changes very drastically with time. Therefore by limiting 
the growth inside the boundaries of the cell one cannot reproduce correctly the 
stationary configurations of the internal core. 

The distinction between static and dynamic features of the aggregates produced 
by growth processes is the main issue of this letter. We will introduce a formalism to 
define a measure for each given configuration in a box. This allows us to calculate all 
static and dynamic properties inside the box. We will show on the DLA and Eden 
models that a simple renormalisation group applied to the equilibrium configurations 
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gives good estimates for the fractal dimension. We also present a dynamic scaling 
theory for growth models, which compares very favourably with our measured data 
for the DLA and Eden models. 

Let us start by defining every quantity of interest in terms of the growth site 
probabilities { p i } i c r ,  namely the set of probabilities p i  that site i becomes part of the 
aggregate for the generic growth model. In most cases the growth can only occur on 
the perimeter r of the aggregate. We will also indicate by t the number of time steps 
to grow the aggregate, which coincides with the total number of particles in the 
aggregate N. 

The probability p (  C) that a given cluster configuration of N particles occurs in a 
growth model is given by 

where P ~ , , , , , ~  is the probability for a given sequence of N steps and is given by the 
product of the probabilities p i  of adding a particle at each step. The sum is over all 
sequences of N steps leading to the configuration C. 

Since the aggregate evolves in the course of time, one might ask how to calculate 
static properties. To answer this question we will consider an imaginary box of length 
L. Let an aggregate grow from a seed at the centre of the box regardless of the presence 
of the box. After a large number of time steps the aggregate will start to grow outside 
the box. Consider now the cluster configuration C inside the box. The probability 
p ( C ,  L, t )  that such a configuration is realised at time t is given by 

where P ~ , , , , , ~  is the probability that a given sequence of t steps leads to the configuration 
C in the box and the sum is over all possible such sequences. 

The equilibrium distribution is given by 

p (  C, L )  = lim t-tm p (  C, L, t ) .  (3) 

In this way we can calculate any static quantity in the box L and take the thermodynamic 
limit L + W. 

As an example, the mass or number of particles M ( L ,  t )  in the box L at time t is 
given by 

(4) 

where M ( C )  is the mass contained in the box in the configuration C. At equilibrium 
the mass in the box M,,(L) is simply 

( 5 )  

M ( L ,  1 )  =c p(C,  L, t ) M ( C )  

Meq( L )  = lim 1 - 0 0  M (  L, t )  

from which an effective fractal dimension dXL) relative to the box of size L can be 
defined as 

and then the fractal dimension of the aggregate d f  is given by 
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In this way we have been able to construct a measure ( 2 )  for each configuration 
inside the box. For large t the growth occurs mainly outside the box without affecting 
the configuration in the box. Thus the measure becomes independent of t. 

Note that the procedure (5)-(7) to calculate the fractal dimension can also be recast 
in the language of a large-cell renormalisation group [9] as elaborated in [lo]. In this 
approach if m, is the mass of the single particle in the aggregate, the renormalisation 
procedure maps the cell into a single site of mass 

mb = Amo (8) 

where A = M,, (L) /mo  is the average number of particles in the cell after reaching 
equilibrium. Equation (8) gives a recursion relation with eigenvalue represented by A 
and with a ‘critical’ exponent or fractal dimension given by (6) for mo=  1. The 
expression in (6) gives therefore the approximate value relative to a cell of size L, 
which approaches its true value in the infinite-cell limit. 

We have measured for the square lattice the mass M ( L ,  t )  contained in a cell of 
size L at time t (4) by generating a large number of clusters of t particles and averaging 
over the configurations which span the cell in the four directions. For generating the 
clusters both the Eden and DLA algorithms have been used. (The Eden cluster is grown 
by starting from a seed and adding a particle at each time step on a randomly selected 
perimeter site, each perimeter site having a priori the same probability to be chosen. 
The DLA cluster is grown by starting from a seed, and letting random-walking particles, 
launched one at a time from far away, accrete, sticking irreversibly as soon as they 
contact the already formed structure.) The program we used stopped the growth of 
each cluster at fixed intervals (for example, every 150 particles) and measured the 
number of particles included in a series of concentric cells superimposed on the cluster. 

In figures l ( a )  and 2 ( a )  we have plotted the ‘effective’ time-dependent fractal 
dimension 

In M ( L ,  t )  

In L 
&L, t )  = (9) 

from which df(L) = lim,+m dXL, t )  can be obtained. 
Finally extrapolating dd L) for L + CO we obtain the fractal dimension df. Figure 

1( b )  shows the results for the Eden model: one extrapolates to the right value df = 2 
from a line ddl / ln  L) constant in l / ln L, showing the great advantage of this method 
over previous renormalisation groups, where the convergence was very slow. 

A good convergence is also found for DLA (see figure 2 ( b ) ) ,  where d d L )  converges 
to df= 1.696, in excellent agreement with the best estimates for the fractal dimension 
of DLA clusters. 

To find the dynamic behaviour using a scaling approach we can write 

M ( L ,  t )  = M ( L ,  W l f ( t / T ) .  (10) 

Here M ( L ,  CO) - Ldf. T is a characteristic time above which the mass inside the box 
does not change any more; we assume that T scales as the length of the box to some 
unknown exponent z, i.e. T - L’. We have f ( x )  + constant for x >> 1 and f ( x )  - xdr/’ 
for x << 1, since the mass inside the box must be independent of L for large enough L 
and small enough t. Moreover for x << 1 we also have M (  L, t )  = t, since all the mass 
is inside the box. Thus we can conclude that z = df. 
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Figure 1. Eden model. ( a )  d{(L, t )  against f ;  for each L the curve reaches the limit value 
d[(L,a?) = 2 .  ( b )  df(L,a?) against l / l n  L ;  the asymptotic intercept, marked by an arrow 
on the graph, represents the fractal dimension of the model d ,  = 2. 
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Figure 2. DLA model. ( a )  df(L, I )  against 1 ;  for each L the curve goes to a different limit. 
( b )  df( L, X) against l / ln  L;  the asymptotic intercept, marked by an arrow on the graph, 
represents the fractal dimension of the model d,=  1.691 *0.010. The points shown have a 
statistics ranging from 500 to 1000 trials. Note that to obtain the points up to L = 100 we 
had to produce clusters of the order of 8000 particles. 

Using the data of figure 1 we can measure the dynamic exponent z and check our 
prediction. In fact a plot of M (  L, t ) / M (  L, 00) as a function of t gives us T (  L )  as the 
time value in which every curve assumes the same arbitrary reference value. A plot 
of In T ( L )  against In L then gives z. 

Figure 3(a)  illustrates our results for the Eden model, and shows clearly that we 
get zE = 2. Figure 4 is related to our measures on the DLA model, from which we get 
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Figure 3. Plot of In T against In L. ( a )  Eden model giving slope zE = 2. ( b )  DLA model 
giving slope zDLA = 1.694 * 0.010. 

zDLA = 1.694* 0.010, which compares very well with the value we got for df= 
1.691 *0.010. 

Finally figure 4 shows the data collapse for the Eden and DLA models obtained by 
plotting M ( L ,  t ) / M ( L ,  CO) against t / T .  

In conclusion we have developed a formalism which allows us to calculate correctly 
the static properties of growth phenomena and to study their dynamic behaviour. We 
have applied this formalism to define a renormalisation group procedure based on a 
cell-to-site renormalisation group. This procedure has the advantage of drastically 
reducing the surface effects, giving the possibility of measuring bulk quantities with 
noticeable precision, and is especially useful for calculating the fractal dimension for 
systems which slowly converge to their asymptotic value. Moreover it provides a way 
of obtaining valuable information on the dynamics of growth models. 

This research was supported in part by CNR-NSF grants and by the NSF and ARO. 
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Figure 4. Data collapse plotted as M ( L ,  t ) / M (  L, CO) for various values of L for: ( a )  Eden 
model; ( b )  DLA model. 
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